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A M O D I F I E D  M U L T H O P P - K A L A N D I Y A  M E T H O D  I N  
T H E  C O N T A C T  P R O B L E M  F O R  A S L I D E R  B E A R I N G t  

V. M. A L E K S A N D R O V  a n d  A.  A.  S H M A T K O V A  

MOSCOW 

(Received 14 October 1999) 

Problems of the equilibrium of an elastic circular disc and an elastic plane with a round hole under plane strain conditions in 
displacements are considered. Then, on the basis of the solution of these problems, the contact problem for a slider bearing is 
formulated. With respect to the contact pressure, an integral equation of the first kind with a difference kernel having a singularity 
of logarithmic form is obtained. A special version of the Multhopp-Kalandiya method is developed to solve this equation. 
Numerical results are given. © 2000 Elsevier Science Ltd. All rights reserved. 

The contact problem for a slider bearing has repeatedly been investigated by other methods; note, for 
example, the monograph by Teplyi [1] and the recent paper by Kovalenko [2]. Below, unlike other 
researchers, for the first time a characteristic of practical importance - the relation between the 
impression force and the indentation - is obtained. 

1. T H E  G E N E R A L  S O L U T I O N  OF T H E  E Q U A T I O N S  OF E L A S T I C I T Y  
T H E O R Y  IN A P O L A R  S Y S T E M  OF C O O R D I N A T E  3 

Under  conditions of plane strain, we will seek the solution of Lam6's equations when there are no mass 
forces in a polar system of coordinate 3 r, 0 in the form 

ur = Y. U(r")(r) cosnO, uo = ~.u(en)(r) sinnO (1.1) 
n=0 n=l 

After simple but lengthy calculations, we obtain [3] 

u~°)(r) = (I - x)C{°)y - (I + x)C~(°)y - '  

u~')(r) = 2[(2 - x)C{')y 2 - (2 + x)C~')y -2 + D~')(1 - x In y) - KD~ I)] 

u~oO(r) = -2[(2 + x)C~°y 2 + (2 + ×)~J)y-2 _ ×(D{I)In y + D~t))] (1.2) 

u~0.)(r) j = +2[(n + I w ×)~")y"÷' ~:(n +!  + x)C~")y -"-' + 

+(n- l -x)D~n)y  n-I g(n-I+x)D~n)y -n÷l ] (n~>2) 

where y = r/a, a is the characteristic radius of the body, C~ n), C~ n), D~ n) and D~ n) are arbitrary constants, 
x = 3 - 4v and v i,; Poisson's ratio. 

From the formulae of Hooke's  law we determine the stresses 

2o 2o n o Or = -  I. O P(OCOSn0, O0 = 
r n=O r n=O 

2G 
"~ro = ~. ~ ) ( r ) s i n  n0 

r n=l 
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{ fft~°)(r>[ = - 2  C~°)y + (I + ~)Ct20) v -I 

~(,.t)(r) = 21-2C~l)y  2 + 2(2 + x)C(2 I)y-2 _ (3 + x)D~ i) / 2] 

O(et)(r) = - 2 [ 6 C l l ) y  2 + 2(2 + × ) c ( i ) y  -2 + (I - x)D~ I) / 2] 

x%)(r )  = -2 [2CJ t )y  2 - ,2 (2  + ×)C(2 ')y-2 + (I - ×)DJ ') / 2] 

{ O~") ( r ) [  - +21(n + I ) (n -T- 2)C~")y "+j + (n + I ) (n  + ! + × )C( " )y  - " - I  + (~(.")(r)j - 

+(n - I)(n - I - ×)D~n)y "-I + (n - I)(n + 2)D~")y -"+l ] (n ~> 2) 

x~)(r) = -2[n(n  + I)C~")y "÷j - (n + I)(n + I + x)C2~n)y -"-I  + 

+(n - I)(n - i - ×)D~")y "-j - n(n - 1)D2tn)y -"+t ] (n ~> 2) 

where G is the shear  modulus.  

(1.3) 

2. T H E  E Q U I L I B R I U M  O F  A C I R C U L A R  D I S C  A N D  A P L A N E  
W I T H  A C I R C U L A R  H O L E  U N D E R  T H E  A C T I O N  O F  A N  

A R B I T R A R Y  N O R M A L  L O A D  

We will consider the problem of  the equilibrium of  an elastic disc o f  radius a loaded at its centre by a 
point  force P, which is balanced by a normal  load q(0) distributed at r = a (Fig. 1). Let  q(0) be a 
sufficiently smooth,  even function. Then  

! x 

q(O)=2 qo + ~=q, cosnO, q, =-~ ~q(~)cosnwd~g (2.1) 

The  boundary  condit ions o f  the problem at r = a have the form 

~r = -q(0),  x~o = 0 (2.2) 

Furthermore,  we take into account  the fact that  

lim r ~ (or  cos 0 -  %0 sin 0)d0 = - P  (r  ~ 0) (2.3) 
--1~ 

and there is no rigid displacement  of  the disc in the direction of  the y axis, defined by the formula 

v = u r c o s 0 -  u 0 sin 0 (2.4) 

y 

(o) 

Fig. 1. 
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From conditions (2.2) and (2.3), on the basis of formulae (1.3), we obtain 

C~n) = 0 (n >~ 0), D ~ " ) = O ( n > ~ 2 )  

c~o) = qo__aa (7}t) = q t a ( I - x )  
8 G '  - '  16G(l+x) 

C~,,) = q,,a (n ~ 2), DI n) = 
8G(n + I) 

ql a D~l) = Dlt) = 4G(! + × ) '  

(2.5) 
q , a n  (n >~ 2) 

8G(n - I ) ( n  - 1 - ×) 

P 

4Gn(1 + ×) 

Modified Multhopp-Kalandiya method in the contact problem for a slider bearing. The last two equalities 
of (2.5) are not contradictory if one bears in mind that, from the condition of equilibrium of the disc 

It 

P = a Sq(0)cos0d0 (2.6) 

it follows that ql = P(rta)-k The condition that there are no rigid displacement of the disc in the direction 
of the y axis, based on the formulae (1.2), gives 

D~ ') = 0 (2.7) 

To sum up, from formulae (1.1) and (1.2), using (2.1) and the results of (2.5) and (2.7), we obtain 
for Ur at r = a the expression 

n ( 2 - x ) ( I -  x ) - 4  iq(W)costd~ + a -(I  - x) S q ( ¥ ) d ¥  .~ 
Ur = - 8~G 1 + x 

--It  - I t  

)j: ] +2 x + ! (W)cosntahlt ( t = 0 - W )  
n--2kn+l n - I  

(2.8) 

Summing the series here, using the relations [4] 

~ c o s n t  _ l n ~ s i n 2  ] ~ s i n n t , _  . = , = 2 ( n s g n t - t )  
n= l  Fl n = l  /1 

(2.9) 

finally, at r = a, we will have 

c a "  ( --:O 
ur nO _ S q ( ¥ ) K '  ( t )dw 0 = I - v 

K t ( t ) = - c o s t l n  sin 2 2 ( i + x )  ( l + x ) 2 c o s t  

(2.10) 

We will now consider the problem of the equilibrium of an elastic plane with a hole of radius a under 
the action of a normal load q(0) of the form (2.1) distributed at r -- a (Fig. 2). 

The boundary ,conditions of  the problem at r = a have the form of (2.2). Furthermore, we will take 
into account that, as r ~ 0% relation (2.3) holds and there is no rigid displacement of the plane with 
the hole in the direction of the y axis. Then, by the scheme set out above for the previous problem, 
using formulae (1.1)-(1.3) we obtain for ur at r = a the expression 

It 

K2( t )=_cos t ln2s in  t +  l - x  sint(•sgnt 1 2 2 ( l + x )  - t ) + ~ c o s t  

(2.11) 
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I 1 

,. j 

Fig. 2. 

3. F O R M U L A T I O N  O F  T H E  C O N T A C T  P R O B L E M  
F O R  A S L I D E R  B E A R I N G  

Using relations (2.10) and (2.11), we will investigate the contact problem for a slider bearing. 
Let  an elastic disc of radius b = a - A be indented by a force P applied at its centre into the surface 

of a hole of radius a in an elastic plane. For simplicity we will assume below that the disc and the plane 
are made of the same material and that A/a ~ 1. 

Under the action of the force P, the disc moves progressively in the direction of the force by an amount 
G and, between the surfaces of the disc and the plane with the hole, a contact region I 01 ~< ~x is formed 
(Fig. 3 - for clarity, the quantities h and G are exaggerated in the figure). In the contact region a contact 
pressure p(0) arises, balancing the force P. The condition of contact of the disc and the plane with the 
hole, taking into account the difference A in the radii of the disc and the hole and the rigid displacement 
of the disc in the direction of the force by an amount G, can be written in the form [5] 

- u  t (0) + u 2 (0) = (t~ + G) cos 0 - A (3.1) 

where Ul(O ) and u2(O) are the radial displacements in the region of contact of points of the disc and 
the plane with the hole, respectively. 

Y, 

. , 

T 

Fig. 3. 
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Adopting expression (2.10) for ul(0) (here, in view of the smallness of A/a, we assume that b = a) 
and expression (2.11) for u2(0), and assuming in (2.10) and (2.11) that 

q(O) = p(O) (I 01 ~< a), q(0) = 0 (or <101 ~< n) (3.2) 

from (3.1) we obtain the integral equation 

- p(~) In2s in  a~ = 5 (0 ) -  {p(¥)F(t)a~ 
- ~ t  -Or 

a(0) = (A + 5) cos 0 - A 

F( t )=(I -cos t ) ln2s in  -(l+-i-~x) cost- -~ 

(I 01 ~< et) (3.3) 

which can be used to determine the contact pressure. In order to complete the formulation of the 
problem, it is necessary to add to Eq. (3.3) the condition of equilibrium of the disc 

Ot 

P = a j p(O)cos 0d0 (3.4) 
--Or 

and the condition that the contact pressure at the points 0 = +__ct is limited, which is usually reduced 
to the form [6] 

p(±ct) = 0 (3.5) 

4. METHOD OF SOLUTION 

Modifying the Multhopp-Kalandiya method [7-9], we will use it to solve integral equation (3.3). 
Using the known results in [6] concerning the structure of the solution of the integral equations of 

contact problems, we will seek a solution of Eq. (3.3) in the form 

cos(0 / 2)(o(0) 
p(O) 

42[sin2 (or / 2 ) -  sin 2 (0 / 2)] 
(4.1) 

Substituting expression (4.1) into (3.3) and replacing the variables according to the formulae 

sin(0/2) sin(~/2) (4.2) 
x--- sin(or/2)' ~= sin(a/2) 

after some reductJion we rewrite integral equation (3.3) as follows: 

_}. co.(~) [In ~o ' oo,(~) 

m,(x)= c0(g(x)), /~ = In[2sin(ot/2)], 6,(x) = 5(g(x)) 

"P(x, ~) = [ F(g(x) - g(~)) + F(g(x) + g(~))] / 2, g(x) = 2 arcsin(x sin(a / 2)) 

(4.3) 

Again, we will change the variables in integral equation (4.3) according to the formulae 

x =  cos O', ~ = c o s  ¥ '  

and rewrite it as fi)llows (the primes are omitted below): 

- f  6 (V)0"  I cos 0 - cos v I + t~ l ay  = - ~  8(0) - f 6 (v) ' e (cos  o, cos ~ ) d v  
0 0 

&(O) = (Oa) -~aco.(cosO), 8(0) = 6-~5.(cos0) 

(4.4) 
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Note also that, by virtue of the second formula of (3.3), 

~(0) = (1 + E)[I - 2cos2 0s in2(a /2 )1 -  ~, e = A / 8  

The following results are necessary below 
A. The Lagrangian polynomial with respect to the Chebyshev nodes 

O n = l t ( 2 n - l ) [ 4 ( i + l ) ]  -I, n = l , 2  ..... i+1; i ~ l  

for an even function f(0)(0 ~< 0 ~< n) is given by the formula [7-9] 

J i+1 i 
f(O) -- .---7 ~'- f(O.)[1 + 2 Y.cos(2mO.) cos(2mO)] 

i + I n=l m=l 

B. On the basis of (4.5), we have a Gauss-type quadrature formula [7-9]. 

(4.5) 

i f ( v ) d v =  ~ i+J 7----7. Y. f (O,)  (4.6) 
0 /-I- I n=l 

C. For the integral operator on the left-hand side of  Eq. (4.4), the following value relation 
holds [10] 

(4.7) 
x _ ~ -n ln[s in(a l2)]  (m = O) 

-~ cos(2m~)[In [ cosO-cos¥ I +L~Idv - [/t(2m)_ 1 cos(2m0) ' (m >t !) 
0 

We substitute the function (b(0) in the form (4.5) into the left-hand side of integral equation (4.4) 
and evaluate the integral by means of relation (4.7). On the right-hand side of Eq. (4.4), we evaluate 
the integral using formula (4.6). After the integrals have been evaluated, we assume in the relation 
obtained from (4.4) that 0 -- Ok (k = 1, 2 . . . . .  i + 1). As a result, we arrive at the following system of 
linear algebraic equations for ~(0n) 

i+l i+  I - 
t~(0, ) 1- In[sin(a / 2)] + tl) i (0 k, 0n )+ ~P(eos O k, cos 0, ) } = 2 " ~  ~(0~. ) 

n=l 

¢ i (0 ,~ )  = ~ / c o s ( 2 m 0 ) c o s ( 2 m ¥ )  
m=l m 

(4.8) 

5. R E S U L T S  OF T H E  S O L U T I O N  

After solving system of equations (4.8), the required contact-pressure functionp(0), taking into account 
relations (4.1) and (4.3)-(4.5), can be represented in the form 

O~icos(0 / 2) i 
~,a,,T2,,(x) 

p(0) --- a-~/2 sin(a / 2)~]1 - x 2 ,=0 

I i+1 2 i+1 
a o = ~ ECo(O,), am = / - ~  E~(0n)c°s(2rn0,)  

i+1 n=l i In=l  
( m ~  > 1) 

(5.1) 

where x is given by formula (4.2) and T2,,(x) are Chebyshev polynomials of the first kind. From formula 
(3.4) it is now easy to obtain a relation Between the force P acting on the disc with the displacement 
of the dis 6 in the direction of the force 

P = -o~n4-2f t  (a)  (5.2) 

f l (ot)=ao[sin2(al  2 ) -  l]+ al s in2(a l2)12  
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Using the formula 

2 m - I  
T2m(x)-I = - 2 ( l - x  ) Y.U2s(x) (rn>~ 1) (5.3) 

$=0 

where Uz~(x) are Chebyshev polynomials of the second kind, and the boundedness condition (3.5), we 
rewrite the expression for the contact pressure (5.1), taking account of (5.2), in the form 

p4( l_x2)[1  _ x  2 sin2(~/2)] i m-, 
p(0)= Y.a m Y.U2~(x) (5.4) 

~.a~ (or) sin((x / 2) .,=n s=o 

The boundedness condition for the contact pressure (3.5) in this case will itself take the form 

i 

an, = 0 (5.5) 
ra=0 

from which the relation between e and o~ can be found numerically. Let this relation be given by 
= f2(cx); then, by virtue of (5.2), we will also have 

P = -OAn42A (ec) / A (o0 (5.6) 

We will find the maximum contact pressure intensity factor introduced in [1], by the formulae 

g = p(O) I p, p = Pl(rta) (5.7) 

From (5.4) we obtain 

X = A(oO 
A(cO= Zazm-i (5.8) fn (c¢) sin(a / 2) '  m=u 

where i = 2k (even) or i = 2k - 1 (odd). 
We will carry out specific calculations with v = 0.3. Figure 4 shows graphs of K (curve 1), P/(ES) 

(curve 2) and P/(EA)(curve 3) against c~. Curves 1 and 3 agree excellently with the results obtained by 
another method ([1, p. 22]). Curve 2, which is of practical importance, has been obtained for the first 
time. Curve 3, for specified P and A, is used to determine the angle of contact cx, and, for a specified 
value of P and an already known c~, the indentation 8 can then be found from curve 2. 

Figure 5 shows graphs of the ratio p(O)/p as a function of x, where curves 1-5 correspond to 
o~ = n/18, ~/9, r~/6, 2~9 and n/3. All calculations were carried out with i = 14 to 16 significant digits. If 
a smaller number of digits is returned, the error rapidly builds up at fairly large angles ~ < ~. 

I0  

p(O)/P 

.____A-2 
0,5 1.0 

10 

I 

-I 0 

Fig. 4. Fig. 5. 
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